

Environmental Chemical Processes Laboratory

Sources of Aerosols in the Mediterranean (CHARMEX period)

Nikos Mihalopoulos Chemistry Dept. University of Crete National Observatory of Athens

Cyprus Institute

 G. Grivas, C. Theodosi (NOA), M. Tsangaraki (UoC)
J. Sciare (CyI), F. Dulac (CEA) + Charmex consortium

Research Identity

SAMPLING SITES

Corsica

Bou Ismail

★Gozo

Finokalia

Agia Marina

Same .

Research Identity

PM₁₀, 12-24h, n=555, 06/2012-05/2014 PM₁₀, 72-96h, n=255, 2012-2014 PM₁₀, 24h, n=728, 10/2012-12/2014 PM₁₀, 24h, n=1037 , 2012-2014 PM_{2.5}, 24h, n=1057, 08/2012-09/2013

MISTRALS

Organic Carbon Elemental Carbon Main ions Metals

Positive Matrix Factorization (PMF) analysis was performed to identify sources and quantify their contribution to $PM_{2.5}$ and $PM_{10-2.5}$ fractions.

Finokalia, Feb 2013 – Dec 2014

Oil Combustion: V/Ni ≈ 1.2 (not only shipping, also oil combustion for energy production)

Industrial: Rich in Zn, Cu, As

Biogenic: Rich in P, oxalate – Enhanced in summer

Agia Marina Xyliatou, Jan 2013 – Dec 2014

Oil Combustion: Abundance of V, Ni, Pb

Industrial: Rich in Zn, Ni, Cr

Mineral Dust: Contains Al, Ca, Fe, Mn, V, Ni

Sea Salt: Inland site, smaller contribution of fresh sea salt

AgSS 23% SS 14%

Cap Corse, Jun 2013- May 2014

Nitrates: Absence of NH_4NO_3 . NO_3 present as aged marine aerosol - $NaNO_3$, $M_g(NO_3)_2$

Industrial: Rich in Zn, Cu, Cd, As

Combustion: Shipping emissions (V/Ni ≈ 3)

* PM₁₀ reconstructed from composition

Giordan Lighthouse, Jun 2013 – May 2014

Oil Combustion – V/Ni ≈ 2.5, enhanced during summer

Dust – Mixed local and Saharan dust

Industrial – Contains As, Cd, Zn

* PM₁₀ as monitored by TEOM-FDMS at Gharb (2km)

Bou Ismail, Sep 2012 - Jun 2013

Vehicular: Rich in OC, EC, Cu, Zn

Industrial: Rich OC, EC, As, Cd – Probably refinery emissions

Combustion: Heavy oil combustion (V/Ni>2). Small contribution due to limited use of oil for energy production

* PM_{2.5} reconstructed from composition

Natural Sources

Processed Aerosols

Anthropogenic Emissions

Mean monthly variability of contributions (June 2013 – May 2014)

Trajectories

Trajectory Density

Clusters

5-day back-trajectories, arriving at <u>Cyprus</u> every 6-hours HYSPLIT, using GDAS-1 data

Secondary Sulfate

Concentration Weighted Trajectories (CWT) graphs for Cyprus

Oil Combustion

Industrial

Concentration Weighted Trajectories (CWT) graphs for Cyprus

Secondary Sulfate

Potential Source Contribution Function (PSCF) graphs for Cyprus -90th percentile

Oil Combustion

Industrial

Potential Source Contribution Function (PSCF) graphs for <u>Cyprus</u> – 90th percentile

Trajectories

Trajectory Density

Clusters

5-day back-trajectories, arriving at <u>Corsica</u> every 6-hours HYSPLIT, using GDAS-1 data

Secondary Sulfate

Concentration Weighted Trajectories (CWT) graphs for Corsica

Oil Combustion

Industrial

Concentration Weighted Trajectories (CWT) graphs for Corsica

Secondary Sulfate

Potential Source Contribution Function (PSCF) graphs for Corsica-90th percentile

Oil Combustion

Industrial

Potential Source Contribution Function (PSCF) graphs for Corsica - 90th percentile

Trajectories

Trajectory Density

Clusters

5-day back-trajectories, arriving at <u>Crete</u> every 6-hours HYSPLIT, using GDAS-1 data

Secondary Sulfate

Concentration Weighted Trajectories (CWT) graphs for Crete

Oil Combustion

Industrial

Concentration Weighted Trajectories (CWT) graphs for Crete

Oxalate – P rich source

Concentration Weighted Trajectories (CWT) graphs for <u>Crete</u>

Oil Combustion

Industrial

Potential Source Contribution Function (PSCF) graphs for <u>Crete</u>-90th percentile

CHEMICAL PROCA

